Robust Constrained Model Predictive Control

نویسندگان

  • Arthur George Richards
  • Eric M. Feron
چکیده

This thesis extends Model Predictive Control (MPC) for constrained linear systems subject to uncertainty, including persistent disturbances, estimation error and the effects of delay. Previous work has shown that feasibility and constraint satisfaction can be guaranteed by tightening the constraints in a suitable, monotonic sequence. This thesis extends that work in several ways, including more flexible constraint tightening, applied within the prediction horizon, and more general terminal constraints, applied to ensure feasible evolution beyond the horizon. These modifications reduce the conservatism associated with the constraint tightening approach. Modifications to account for estimation error, enabling output feedback control, are presented, and we show that the effects of time delay can be handled in a similar manner. A further extension combines robust MPC with a novel uncertainty estimation algorithm, providing an adaptive MPC that adjusts the optimization constraints to suit the level of uncertainty detected. This adaptive control replaces the need for accurate a priori knowledge of uncertainty bounds. An approximate algorithm is developed for the prediction of the closed-loop performance using the new robust MPC formulation, enabling rapid trade studies on the effect of controller parameters. The constraint tightening concept is applied to develop a novel algorithm for Decentralized MPC (DMPC) for teams of cooperating subsystems with coupled constraints. The centralized MPC optimization is divided into smaller subproblems, each solving for the future actions of a single subsystem. Each subproblem is solved only once per time step, without iteration, and is guaranteed to be feasible. Simulation examples involving multiple Uninhabited Aerial Vehicles (UAVs) demonstrate that the new DMPC algorithm offers significant computational improvement compared to its centralized counterpart. The controllers developed in this thesis are demonstrated throughout in simulated examples related to vehicle control. Also, some of the controllers have been implemented on vehicle testbeds to verify their operation. The tools developed in this thesis improve the applicability of MPC to problems involving uncertainty and high complexity, for example, the control of a team of cooperating UAVs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constrained Model Predictive Control of Low-power Industrial Gas Turbine

Nowadays, extensive research has been conducted for gas turbine engines control due to growing importance of gas turbine engines for different industries and the need to design a suitable control system for a gas turbine as the heart of the industry. In order to design gas turbine control system, various control variables can be used, but in the meantime, fuel flow inserting into combustion cha...

متن کامل

Model Predictive Controller Design for a Novel Moving Mass Controlled Bi-rotor UAV

This paper presents design and implementation of Model Based Predictive Controller (MPC) for a novel Bi-Rotor Moving Mass Controlled (MMC) Unmanned Aerial Vehicle (UAV). Due to the strict constrained control inputs in this type of UAV, it is necessary to take into account the constrained controller design and un-constrained control methods are not applicable. MPC controller which is designed ba...

متن کامل

Improving the stability of the power system based on static synchronous series compensation equipped with robust model predictive control

Low-frequency oscillations (LFO) imperil the stability of the power system and reduce the Capacity of transmission lines. In the power systems, FACTS devices and Power System stabilizers are used to improve the stability. Static synchronous series compensators is one of the most important FACTS devices. This paper investigates the damping of LFO with static synchronous series compensator (SSSC)...

متن کامل

Robust Model Predictive Control for a Class of Discrete Nonlinear systems

This paper presents a robust model predictive control scheme for a class of discrete-time nonlinear systems subject to state and input constraints. Each subsystem is composed of a nominal LTI part and an additive uncertain non-linear time-varying function which satisfies a quadratic constraint. Using the dual-mode MPC stability theory, a sufficient condition is constructed for synthesizing the ...

متن کامل

A Linear Matrix Inequality (LMI) Approach to Robust Model Predictive Control (RMPC) Design in Nonlinear Uncertain Systems Subjected to Control Input Constraint

In this paper, a robust model predictive control (MPC) algorithm is addressed for nonlinear uncertain systems in presence of the control input constraint. For achieving this goal, firstly, the additive and polytopic uncertainties are formulated in the nonlinear uncertain systems. Then, the control policy can be demonstrated as a state feedback control law in order to minimize a given cost funct...

متن کامل

Development of RMPC Algorithm for Compensation of Uncertain Time-Delay and Disturbance in NCS

In this paper‎, ‎a synthesis method based on robust model predictive control is developed for compensation of uncertain time-delays in networked control systems with bounded disturbance‎. ‎The proposed method uses linear matrix inequalities and uncertainty polytope to model uncertain time-delays and system disturbances‎. ‎The continuous system with time-delay is discretized using uncertainty po...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004